The Effect of Fuels and Test Cycles on Light-Duty Vehicle Exhaust Emissions

Kenneth J. Kelly

Master's Thesis Oral Presentation
Ohio University
Department of Mechanical Engineering

June 1998

Outline

- General Description
- Fuels
- Vehicles
- Test Procedures
- Data Analysis
- Results
- Conclusions
- Future Research

Program Participants

Funding

U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies Washington, D.C.

Program management

National Renewable Energy Laboratory Center for Transportation Technologies and Systems Golden, Colorado

Emissions testing laboratory

Automotive Testing Laboratories, Inc. East Liberty, Ohio

Test vehicles

Various agencies operating vehicles in the U.S. federal fleet

Test Program Rationale

U.S. Department of Energy

- Alternative fuels programs
 - Energy security
 - Renewable resources
 - Alternative fuel vehicle deployment
- 1988 Alternative Motor Fuels Act
- 1992 Energy Policy Act

U.S. Environmental Protecon Agency

- Clean air programs
 - Control of emissions from mobile sources
 - Tightening emissions standards
 - New emissions testing procedures
 - Clean fuel and clean fuel fleet mandates
 - Reformulated gasoline programs
 - Emissions inventories
 - Air toxins
 - Ozone
 - Global warming
- 1970 Clean Air Act
- 1990 Clean Air Act Amendments

Objective

To evaluate exhaust emissions from current production technology, light-duty alternative fuel vehicles over several emissions testing procedures

Test Procedures

- FTP-75
- Cold CO
- US06

Test Vehicles

- Alcohol flexible fuel
- Dedicated natural gas
- Bi-fuel natural gas
- Standard gasoline

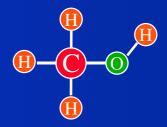
Test Fuels

- Methanol
- Ethanol
- Natural gas
- Reformulated gasoline

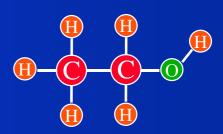
Test Fuels

Alcohol Fuels

Advantages


- Relatively simple chemical composition
- High octane rating
- High ratios of oxygen and hydrogen to carbon
- No sulfur
- Renewable resource

Disadvantages


- Low energy content
- Corrosive/solvent nature
- Lower combustion temperature
- Aldehyde emissions
- Cost

Test fuel blends

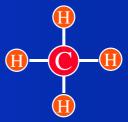
- M85—85% methanol blended with 15% RFG
- E85—85% ethanol blended with 15% RFG

Methanol (CH₃OH)

Ethanol (C₂H₅OH)

Natural Gas Fuels

Advantages


- Simple chemical composition
- High ratio of hydrogen to carbon
- High octane rating
- No sulfur
- Cost
- Domestic resource

Disadvantages

- Very low density
- Lack of lubricity
- Safety

Test fuel blends

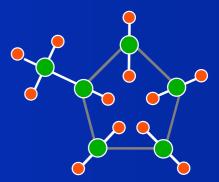
- Methane 93.0%
- Ethane 3.5%
- Nitrogen 1.7%
- Carbon dioxide 0.8%
- Propane 0.7%

93% Methane (CH₄)

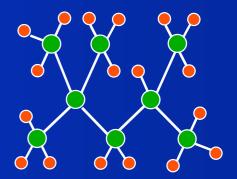
Reformulated Gasoline

- Developed by industry (Auto/Oil Air Quality Improvement Program [AQIRP])
- California and federal mandates
- Reduced aromatics, olefins, and sulfur
- Increased oxygen

Advantages


- Air quality improvements
- Existing infrastructure and production
- No vehicle modifications

Disadvantages


- Incremental improvements
- Non-domestic fuel
- Non-renewable

Test fuel

California Phase II reformulated gasoline

Methyl-cyclo-pentane

Iso-octane

Ethylene

Test Vehicles

CNG Vehicle Technology

- Dedicated natural gas
 - Single fuel system "optimized" for operation on natural gas
- Bi-fuel natural gas
 - Gaseous and liquid fuel systems on board
 - Capable of switching between fuels
 - "Compromised" fuel/emissions system controls

Typical features of natural gas vehicle

- High pressure fuel tanks—3600 psi
- High pressure fuel lines and gaseous refueling connector
- Fuel pressure regulator, temperature and pressure sensors
- Gaseous fuel injectors
- Special programming of electronic control module of air/fuel ratio calibration
- Hardened valve seats, stems and guides may be needed to reduce engine wear rates
- Dedicated vehicles do not need evaporative emissions control system
- Dedicated vehicles may include increased compression ratios

1994 Dodge B250 Van

Dedicated CNG 5.2 liter V-8 engine

1996 Ford F150 Pickup

Bi-fuel CNG 4.9 liter V-6 engine GFI control system

Alcohol Vehicle Technology

- Flexible-fuel vehicles
- Allow operation on a blend of liquid fuels from 85% alcohol with 15% gasoline to 100% gasoline in a single fuel system

Typical features of a flexible-fuel vehicle

- Alcohol-compatible fuel system components—stainless steel fuel tanks and lines, special alcohol compatible polymers in seals, gaskets, and hoses
- Increased volume fuel tank
- Increased flow volume fuel injectors
- Alcohol fuel sensor
- Special programming of electronic control module for air/fuel ratio calibration
- Hardened valve seats and related components to reduce engine wear rates
- Increased capacity evaporative emissions cannisters

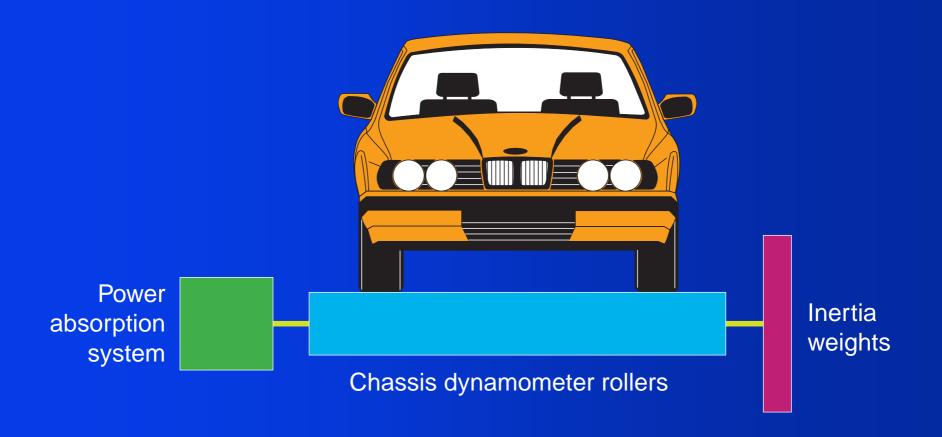
1995 Dodge Intrepid

M85 flexible-fuel 3.3 liter V-6 engine

1995 Ford Taurus

M85 flexible-fuel
3.0 liter V-6 engine
FFV certified to TLEV

Number and Types of Test Vehicles

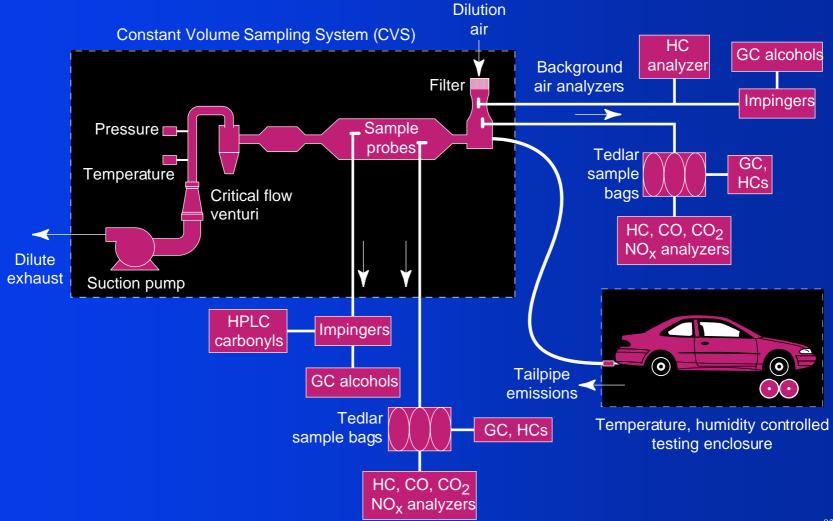

Vehicle Make	Vehicle Model	Model Year	Vehicle Type	Number of Test Vehicles	Test Fuel	Number of Repeat Tests	Total Number of Tests
Dodge	Intrepid	1995	FFV	4	M85	1	5
					RFG	1	5
			Standard	4	RFG	1	5
Ford	Ford Taurus	1995	FFV	4	M85	1	5
					E85	1	5
					RFG	1	5
			Standard	4	RFG	1	5
Dodge	B250 Van	1994	Dedicated	4	CNG	1	5
			Standard	4	RFG	1	5
Ford	F150 Pickup	1996	QVM	4	CNG	1	5
					RFG	1	5
	Test	and vel	nike totals	28		11	55

Test Procedures

Emissions Testing

- Federal test procedures—Code of Federal Regulations CFR 40,
 Part 86
- Chassis dynamometer exhaust emissions
- Federal regulated emissions
 - Hydrocarbons
 - Carbon monoxide
 - Oxides of nitrogen
- Aldehydes and alcohols
- Greenhouse gases
- Fuel economy

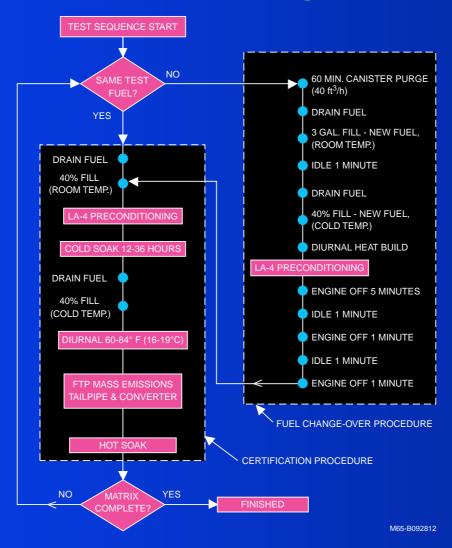
Schematic of Chassis Dynamometer

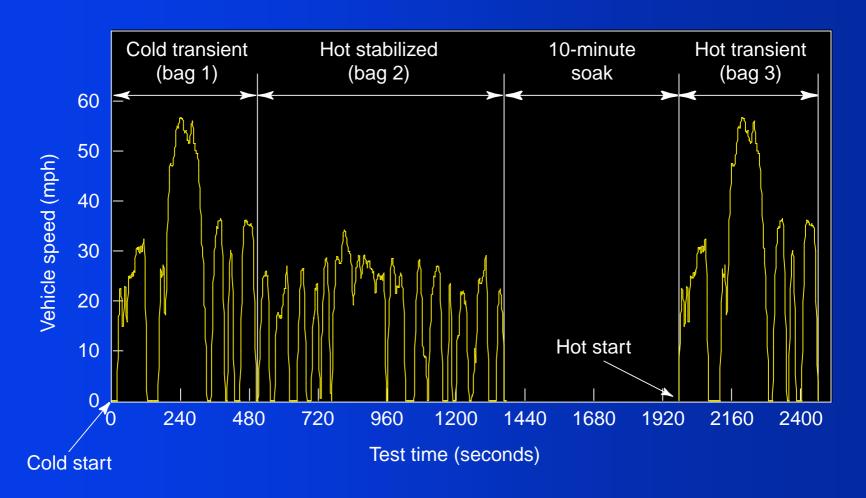

1996 Ford Taurus on Chassis Dynamometer

Ford F150 Pickup on Chassis Dynamometer (Rear Wheel Drive)

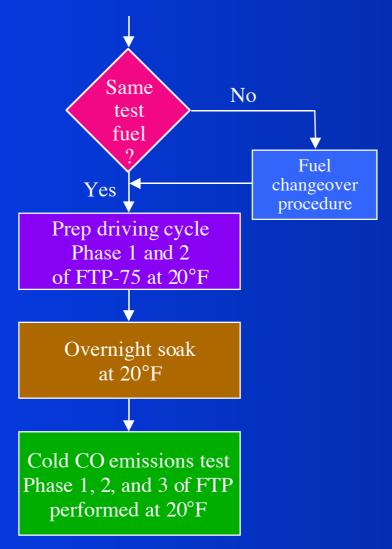
Exhaust Emissions Sampling System

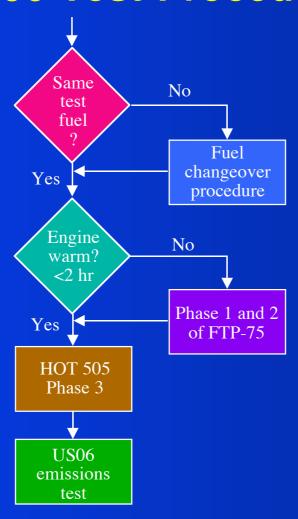
Exhaust Emissions Transfer Hose

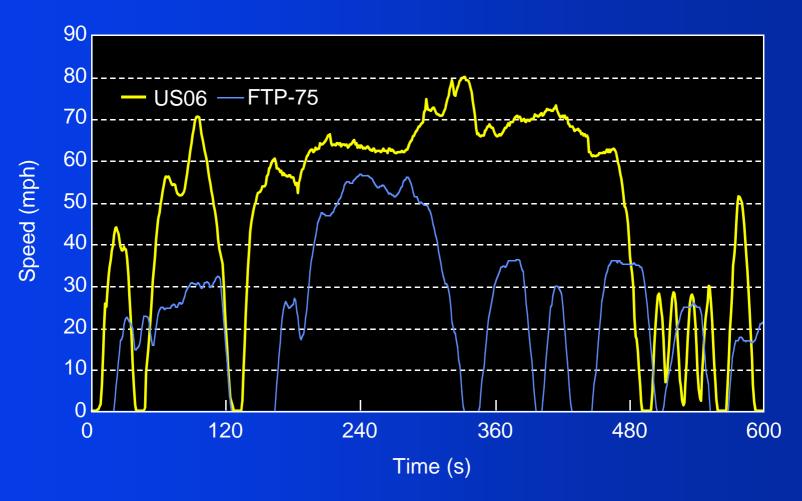

Exhaust and Dilution Air Sampling Bags


FTP-75

- Cornerstone of federal test procedure for emissions certification and city fuel economy estimate
- Chassis dynamometer test cycle
- Three phases
 - Cold transient
 - Stabilized
 - Hot transient
- Fuel changeover procedure
- Evaporative emissions

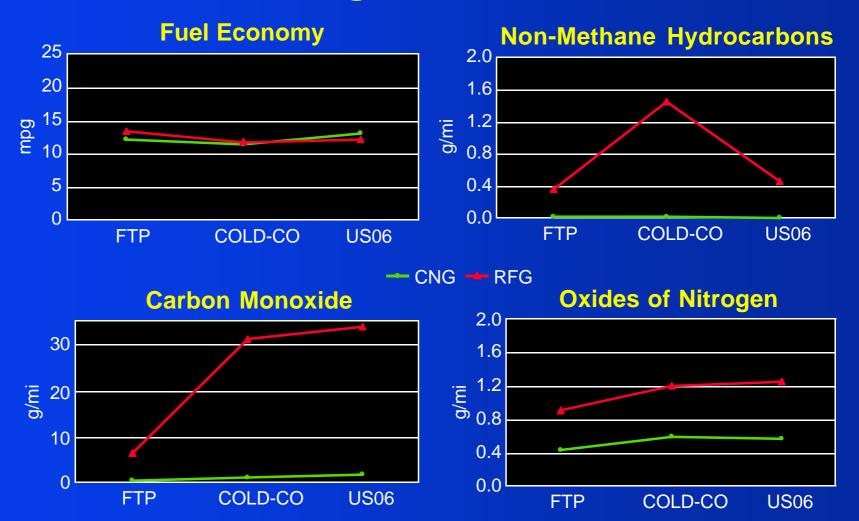

FTP-75 Test and Fuel Changeover Procedure


EPA FTP-75 Driving Cycle

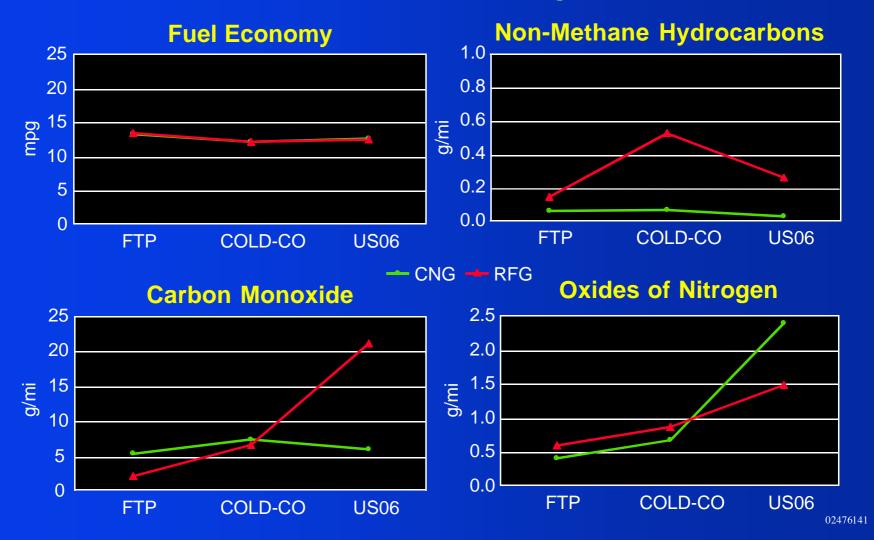

Cold CO Test Procedure

US06 Test Procedure

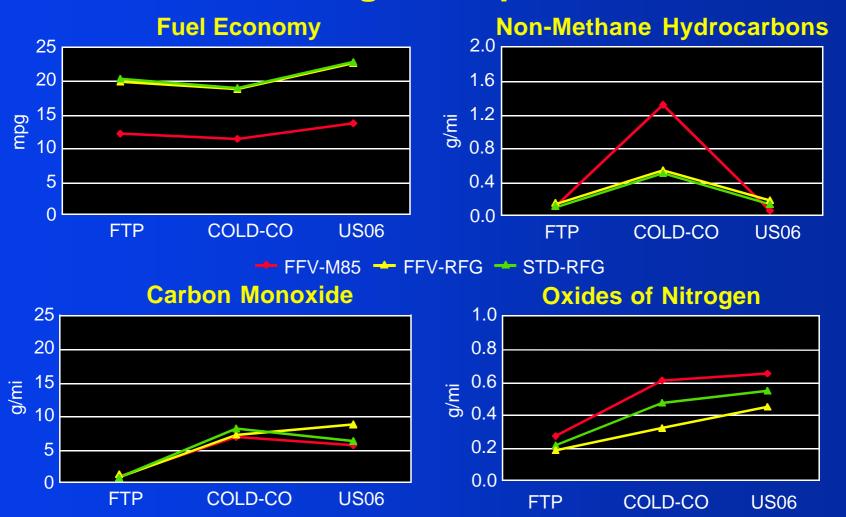
US06 and 600 Seconds of FTP-75

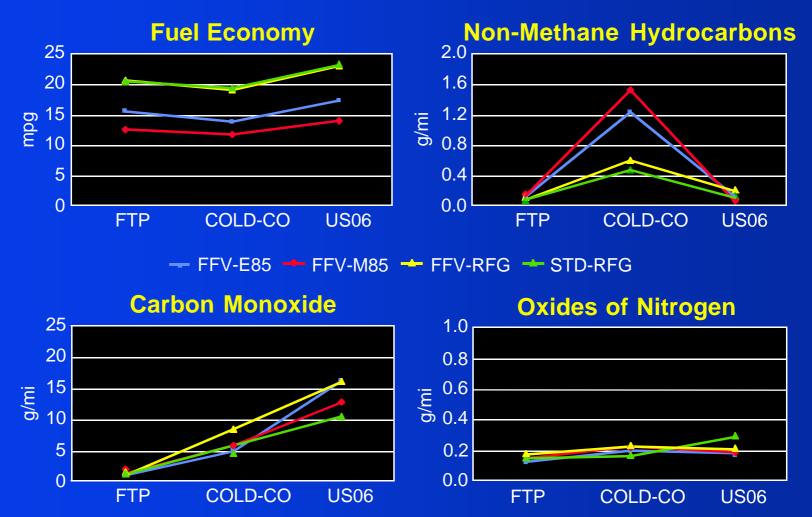


ANOVA


- Multi-variable analysis of variance
- JMP software
- Primary effects
 - Vehicles
 - Fuels
 - Test cycles
- Interactions
 - Fuels x Test cycles
 - Vehicle x Fuel
 - Vehicle x Test cycle
- F-test comparing variance between effects to an overall estimate of sample variance

Summary of Results


Dodge B250 Van


Ford F150 Pickup

Dodge Intrepid

Ford Taurus

Summary of Fuel Economy and Emissions Results Cold CO Summary

		MPG	NMHC	тнс	СО	NO _x	нсно	СН3СНО	CARBONYL	CO ₂	CH ₄
Alcohol											
FFV Intrepid	M85										
FFV Taurus	M85										
FFV Taurus	E85										
CNG											
CNG B250	CNG										
QVM F150	CNG										
RFG											
FFV Intrepid	RFG								_		
FFV Taurus	RFG										
QVM F150	RFG								•		
Std Intrepid	RFG										
Std Taurus	COLD CO										
Std B250	RFG								_		

• 0–50% increase

• 0–50% decrease

▲ 50–100% increase

▲ 50–100% decrease

>100% increase

>100% decrease

Summary of Fuel Economy and Emissions Results US06 Summary

		MPG	NMHC	тнс	СО	NO _x	нсно	СН3СНО	CARBONYL	CO ₂	CH ₄
Alcohol											
FFV Intrepid	M85										
FFV Taurus	M85								A		
FFV Taurus	E85										
CNG	CNG										
CNG B250	CNG								A		
QVM F150	CNG										
RFG											
FFV Intrepid	RFG										
FFV Taurus	RFG										
QVM F150	RFG								•		
Std Intrepid	RFG										
Std Taurus	RFG										
Std B250	RFG								•		

0–50% increase

● 0–50% decrease

▲ 50–100% increase

▲ 50–100% decrease

>100% increase

>100% decrease

Key Results

ANOVA showed that the test cycle, fuel and the interactions between test cycles and fuels had statistically significant impacts on vehicle emissions at the 95% confidence level

Cold CO versus FTP

- Increase in nearly all exhaust emissions constituents
- Decrease in fuel economy for all vehicles and fuels

US06 versus FTP

- Increase in CO and NO_x
- Increased fuel economy except for gasoline van and bi-fuel pickup
- Decrease in aldehyde emissions

Alcohol flexible fuel vehicles

- Significantly larger increase in hydrocarbon and aldehyde emissions on the Cold CO test compared to other fuels
- Small increases in fuel efficiency compared to RFG across all cycles

Dedicated CNG van

- Relatively unreactive to changes in driving cycles
- Maintained large emissions benefits compared to RFG across all cycles

• Bi-fuel CNG pickup

- NMHC and CO were relatively unreactive to changes in driving cycle
- Large increase in NO_x emissions for US06 test
- Emissions compared to RFG was mixed

Conclusions

- Driving behaviors and conditions play an important role in vehicle emissions.
- The various alternative fuels and vehicle designs can have different emissions reactions to the driving conditions.
- Additional development is needed to control hydrocarbon emissions from alcohol fuel vehicles under cold start conditions.
- Dedicated CNG vehicles exhibit a strong potential for reducing emissions under the three test procedures used in this study.
- Bi-fuel CNG vehicles may not be as effective as dedicated CNG vehicles in reducing exhaust emissions.

Additional Research

- Latest alternative fuel vehicles
 - Improvements to ethanol flexible fuel vehicle
 - Latest dedicated CNG vehicles advertising even lower emissions
 - Improvements to bi-fuel CNG vehicle fuel system control
 - New bi-fuel LPG vehicles
- Second by second emissions and air/fuel ratio data
- Detailed hydrocarbon speciation
- Particulate Matter (PM) measurements